Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Assessing the impact of the 4CL enzyme complex on the robustness of monolignol biosynthesis using metabolic pathway analysis.

Identifieur interne : 001045 ( Main/Exploration ); précédent : 001044; suivant : 001046

Assessing the impact of the 4CL enzyme complex on the robustness of monolignol biosynthesis using metabolic pathway analysis.

Auteurs : Punith Naik [États-Unis] ; Jack P. Wang [États-Unis] ; Ronald Sederoff [États-Unis] ; Vincent Chiang [États-Unis] ; Cranos Williams [États-Unis] ; Joel J. Ducoste [États-Unis]

Source :

RBID : pubmed:29509777

Descripteurs français

English descriptors

Abstract

Lignin is a polymer present in the secondary cell walls of all vascular plants. It is a known barrier to pulping and the extraction of high-energy sugars from cellulosic biomass. The challenge faced with predicting outcomes of transgenic plants with reduced lignin is due in part to the presence of unique protein-protein interactions that influence the regulation and metabolic flux in the pathway. Yet, it is unclear why certain plants have evolved to create these protein complexes. In this study, we use mathematical models to investigate the role that the protein complex, formed specifically between Ptr4CL3 and Ptr4CL5 enzymes, have on the monolignol biosynthesis pathway. The role of this Ptr4CL3-Ptr4CL5 enzyme complex on the steady state flux distribution was quantified by performing Monte Carlo simulations. The effect of this complex on the robustness and the homeostatic properties of the pathway were identified by performing sensitivity and stability analyses, respectively. Results from these robustness and stability analyses suggest that the monolignol biosynthetic pathway is resilient to mild perturbations in the presence of the Ptr4CL3-Ptr4CL5 complex. Specifically, the presence of Ptr4CL3-Ptr4CL5 complex increased the stability of the pathway by 22%. The robustness in the pathway is maintained due to the presence of multiple enzyme isoforms as well as the presence of alternative pathways resulting from the presence of the Ptr4CL3-Ptr4CL5 complex.

DOI: 10.1371/journal.pone.0193896
PubMed: 29509777
PubMed Central: PMC5839572


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Assessing the impact of the 4CL enzyme complex on the robustness of monolignol biosynthesis using metabolic pathway analysis.</title>
<author>
<name sortKey="Naik, Punith" sort="Naik, Punith" uniqKey="Naik P" first="Punith" last="Naik">Punith Naik</name>
<affiliation wicri:level="2">
<nlm:affiliation>Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jack P" sort="Wang, Jack P" uniqKey="Wang J" first="Jack P" last="Wang">Jack P. Wang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sederoff, Ronald" sort="Sederoff, Ronald" uniqKey="Sederoff R" first="Ronald" last="Sederoff">Ronald Sederoff</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chiang, Vincent" sort="Chiang, Vincent" uniqKey="Chiang V" first="Vincent" last="Chiang">Vincent Chiang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Williams, Cranos" sort="Williams, Cranos" uniqKey="Williams C" first="Cranos" last="Williams">Cranos Williams</name>
<affiliation wicri:level="2">
<nlm:affiliation>Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ducoste, Joel J" sort="Ducoste, Joel J" uniqKey="Ducoste J" first="Joel J" last="Ducoste">Joel J. Ducoste</name>
<affiliation wicri:level="2">
<nlm:affiliation>Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29509777</idno>
<idno type="pmid">29509777</idno>
<idno type="doi">10.1371/journal.pone.0193896</idno>
<idno type="pmc">PMC5839572</idno>
<idno type="wicri:Area/Main/Corpus">000F39</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F39</idno>
<idno type="wicri:Area/Main/Curation">000F39</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F39</idno>
<idno type="wicri:Area/Main/Exploration">000F39</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Assessing the impact of the 4CL enzyme complex on the robustness of monolignol biosynthesis using metabolic pathway analysis.</title>
<author>
<name sortKey="Naik, Punith" sort="Naik, Punith" uniqKey="Naik P" first="Punith" last="Naik">Punith Naik</name>
<affiliation wicri:level="2">
<nlm:affiliation>Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jack P" sort="Wang, Jack P" uniqKey="Wang J" first="Jack P" last="Wang">Jack P. Wang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sederoff, Ronald" sort="Sederoff, Ronald" uniqKey="Sederoff R" first="Ronald" last="Sederoff">Ronald Sederoff</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chiang, Vincent" sort="Chiang, Vincent" uniqKey="Chiang V" first="Vincent" last="Chiang">Vincent Chiang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Williams, Cranos" sort="Williams, Cranos" uniqKey="Williams C" first="Cranos" last="Williams">Cranos Williams</name>
<affiliation wicri:level="2">
<nlm:affiliation>Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ducoste, Joel J" sort="Ducoste, Joel J" uniqKey="Ducoste J" first="Joel J" last="Ducoste">Joel J. Ducoste</name>
<affiliation wicri:level="2">
<nlm:affiliation>Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biosynthetic Pathways (MeSH)</term>
<term>Homeostasis (MeSH)</term>
<term>Lignin (biosynthesis)</term>
<term>Metabolic Networks and Pathways (MeSH)</term>
<term>Monte Carlo Method (MeSH)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (enzymology)</term>
<term>Populus (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Homéostasie (MeSH)</term>
<term>Lignine (biosynthèse)</term>
<term>Méthode de Monte Carlo (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Voies de biosynthèse (MeSH)</term>
<term>Voies et réseaux métaboliques (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biosynthetic Pathways</term>
<term>Homeostasis</term>
<term>Metabolic Networks and Pathways</term>
<term>Monte Carlo Method</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Homéostasie</term>
<term>Méthode de Monte Carlo</term>
<term>Voies de biosynthèse</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lignin is a polymer present in the secondary cell walls of all vascular plants. It is a known barrier to pulping and the extraction of high-energy sugars from cellulosic biomass. The challenge faced with predicting outcomes of transgenic plants with reduced lignin is due in part to the presence of unique protein-protein interactions that influence the regulation and metabolic flux in the pathway. Yet, it is unclear why certain plants have evolved to create these protein complexes. In this study, we use mathematical models to investigate the role that the protein complex, formed specifically between Ptr4CL3 and Ptr4CL5 enzymes, have on the monolignol biosynthesis pathway. The role of this Ptr4CL3-Ptr4CL5 enzyme complex on the steady state flux distribution was quantified by performing Monte Carlo simulations. The effect of this complex on the robustness and the homeostatic properties of the pathway were identified by performing sensitivity and stability analyses, respectively. Results from these robustness and stability analyses suggest that the monolignol biosynthetic pathway is resilient to mild perturbations in the presence of the Ptr4CL3-Ptr4CL5 complex. Specifically, the presence of Ptr4CL3-Ptr4CL5 complex increased the stability of the pathway by 22%. The robustness in the pathway is maintained due to the presence of multiple enzyme isoforms as well as the presence of alternative pathways resulting from the presence of the Ptr4CL3-Ptr4CL5 complex.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29509777</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>06</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Assessing the impact of the 4CL enzyme complex on the robustness of monolignol biosynthesis using metabolic pathway analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>e0193896</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0193896</ELocationID>
<Abstract>
<AbstractText>Lignin is a polymer present in the secondary cell walls of all vascular plants. It is a known barrier to pulping and the extraction of high-energy sugars from cellulosic biomass. The challenge faced with predicting outcomes of transgenic plants with reduced lignin is due in part to the presence of unique protein-protein interactions that influence the regulation and metabolic flux in the pathway. Yet, it is unclear why certain plants have evolved to create these protein complexes. In this study, we use mathematical models to investigate the role that the protein complex, formed specifically between Ptr4CL3 and Ptr4CL5 enzymes, have on the monolignol biosynthesis pathway. The role of this Ptr4CL3-Ptr4CL5 enzyme complex on the steady state flux distribution was quantified by performing Monte Carlo simulations. The effect of this complex on the robustness and the homeostatic properties of the pathway were identified by performing sensitivity and stability analyses, respectively. Results from these robustness and stability analyses suggest that the monolignol biosynthetic pathway is resilient to mild perturbations in the presence of the Ptr4CL3-Ptr4CL5 complex. Specifically, the presence of Ptr4CL3-Ptr4CL5 complex increased the stability of the pathway by 22%. The robustness in the pathway is maintained due to the presence of multiple enzyme isoforms as well as the presence of alternative pathways resulting from the presence of the Ptr4CL3-Ptr4CL5 complex.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Naik</LastName>
<ForeName>Punith</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jack P</ForeName>
<Initials>JP</Initials>
<AffiliationInfo>
<Affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sederoff</LastName>
<ForeName>Ronald</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chiang</LastName>
<ForeName>Vincent</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Williams</LastName>
<ForeName>Cranos</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ducoste</LastName>
<ForeName>Joel J</ForeName>
<Initials>JJ</Initials>
<Identifier Source="ORCID">0000-0002-3021-3942</Identifier>
<AffiliationInfo>
<Affiliation>Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>03</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D053898" MajorTopicYN="N">Biosynthetic Pathways</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="Y">Metabolic Networks and Pathways</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009010" MajorTopicYN="N">Monte Carlo Method</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>10</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>02</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29509777</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0193896</ArticleId>
<ArticleId IdType="pii">PONE-D-17-35957</ArticleId>
<ArticleId IdType="pmc">PMC5839572</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Syst Biol. 2007;3:146</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18004279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Jan;51(1):144-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19996151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):887-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20639405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Nov;9(11):1985-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9401123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e34686</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22514655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Nov;148(3):1229-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18805953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Mar;26(3):876-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24619612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Math Biosci. 2010 Nov;228(1):78-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20816867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2007;3:137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17882156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2011 May;7(5):e1002047</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21625579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Jul;114(3):871-879</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Apr;152(4):1763-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20118273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2002 Jun;20(6):557-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12042854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Jan;110(1):3-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e39788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22808060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jan 27;311(5760):484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16439654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1996 Oct;37(7):957-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8979396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2012 Sep 7;9(74):2156-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22491976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Mar;26(3):894-914</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24619611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Mar 16;6:6394</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25775164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1999 Aug;17(8):808-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10429249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2011 Nov;7(11):e1002218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22215991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):874-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20729393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Mar;161(3):1501-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23344904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4939-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12668766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2004 Nov;5(11):826-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15520792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2008 Sep 7;254(1):178-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18572196</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Naik, Punith" sort="Naik, Punith" uniqKey="Naik P" first="Punith" last="Naik">Punith Naik</name>
</region>
<name sortKey="Chiang, Vincent" sort="Chiang, Vincent" uniqKey="Chiang V" first="Vincent" last="Chiang">Vincent Chiang</name>
<name sortKey="Ducoste, Joel J" sort="Ducoste, Joel J" uniqKey="Ducoste J" first="Joel J" last="Ducoste">Joel J. Ducoste</name>
<name sortKey="Sederoff, Ronald" sort="Sederoff, Ronald" uniqKey="Sederoff R" first="Ronald" last="Sederoff">Ronald Sederoff</name>
<name sortKey="Wang, Jack P" sort="Wang, Jack P" uniqKey="Wang J" first="Jack P" last="Wang">Jack P. Wang</name>
<name sortKey="Williams, Cranos" sort="Williams, Cranos" uniqKey="Williams C" first="Cranos" last="Williams">Cranos Williams</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001045 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001045 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29509777
   |texte=   Assessing the impact of the 4CL enzyme complex on the robustness of monolignol biosynthesis using metabolic pathway analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29509777" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020